This is a list of my academic work. For talks and similar, visit the
talks page.
I defended my Ph. D. in February, 2019. My dissertation is called Small data: practical modeling
issues in human-model -omic data.
Published
- Theodor A. Ross, Jessin Janice, Sergio Arredondo-Alonso, Iren H.
Löhr, Einar Holsbø, Jukka Corander, Anna K. Pöntinen,
Michael Kampffmeyer, and Kristin Hegstad. Enterococcus lactis is
ecologically and genetically distinct from the major opportunistic
pathogen enterococcus faecium. Microbial Genomics, 11(6)2025.
- M. Askar, L. Småbrekke, E. Holsbø, L. A. Bongo, and
K. Svendsen. Using network analysis modularity to group health code
systems and decrease dimensionality in machine learning models.
Exploratory Research in Clinical and Social Pharmacy, 14:100463,
2024.
- B.-R. Pedersen, R. K. Johansen, E. Holsbø, H. L.
Sommerseth, and L. A. Bongo. More efficient manual review of
automatically transcribed tabular data. Historical Life Course
Studies, 14:3-15, 2024/06/30 2024.
- Pedersen BR, Holsbø E, Andersen T, Shvetsov N, Ravn
J, Sommerseth HL, Bongo LA. Lessons Learned Developing and Using a
Machine Learning Model to Automatically Transcribe 2.3 Million
Handwritten Occupation Codes. (data) Historical Life Course Studies
2022; Volum 11. ISSN 2352-6343.s 1 - 17.s
- Holsbø E, Olsen KS. Metastatic Breast Cancer
and Pre-Diagnostic Blood Gene Expression Profiles—The Norwegian Women
and Cancer (NOWAC) Post-Genome Cohort. Frontiers in oncology. 2020
Oct 15;10:2277.
- Holsbø E., Perduca V., Bongo L. A., Lund E., &
Birmelé E. (2020). Predicting breast cancer metastasis from
whole-blood transcriptomic measurements. BMC Research Notes, 13(1),
1-5.
- T. E. Skar, E. Holsbø, K. Svendsen, and L. A.
Bongo. Interactive exploration of population scale pharmacoepidemiology
datasets. In Proceedings of the 11th acm international conference on
bioinformatics, computational biology and health informatics, BCB ’20,
New York, NY, USA, 2020. , Association for Computing Machinery.
- Dong C, Metzger M, Holsbø E, Perduca V, Carbonnel
F. Systematic review with meta‐analysis: mortality in acute severe
ulcerative colitis. Aliment Pharmacol Ther. 2019; 00: 1– 27.
- Jácome C., Ravn J., Holsbø E., Aviles-Solis J. C.,
Melbye, H. & Bongo, L. A. Convolutional Neural Network for
Breathing Phase Detection in Lung Sounds. Sensors 19, (2019). [arXiv]
- Holsbø E., & Perduca V. (2018). Shrinkage
estimation of rate statistics. Case Studies in Business, Industry
& Government Statistics, 7(1). [arXiv]
- Tartari G, Tiede L, Holsbø E, Knudsen K, Raknes IA,
Fjukstad B, Mode N, Bjørndalen JM, Lund E, and Bongo LA. Mr. Clean:
A Tool for Tracking and Comparing the Lineage of Scientific
Visualization Code. 2nd IEEE Working Conference on Software
Visualization
- Elahi N, Karlsen R, and Holsbø E. Personalized
Photo Recommendation By Leveraging User Modeling On Social Network.
Proceedings of the iiWAS2013 The 15th International Conference on
Information Integration and Web-based Applications & Services.
- Holsbø E, Ha PH, and Anshus O. The Big Digger
& Puzzler System for Harvesting & Analyzing Data from Social
Networks. Norsk informatikkonferanse NIK 2013
Book chapter
- Holsbø E, Møllersen K. Woes of The Practicing
Omics Researcher. Universitetsforlaget 2020 ISBN
978-82-15-04119-3.s 77 - 94.
- Fjukstad B, Shvetsov N, Nøst TH, Bøvelstad HM, Halbach T,
Holsbø E, Hansen, K, Bongo, LA. Reproducible Data
Management and Analysis using R. Universitetsforlaget 2020 ISBN
978-82-15-04119-3.s 48 - 62.s
Preprint
- J. Bangard, E. Holsbø, K. Svendsen, V. Perduca, and
E. Birmelé. Detecting adverse high-order drug interactions from
individual case safety reports using computational statistics on
disproportionality measures. 2025. [arXiv]
- K. Møllersen and E. Holsbø. Accounting for
multiplicity in machine learning benchmark performance. 2024. [arXiv]
- E. Holsbø, V. Perduca, L. A. Bongo, E. Lund, and E.
Birmelé, Stratified time-course gene preselection shows a
pre-diagnostic transcriptomic signal for metastasis in blood cells: a
proof of concept from the NOWAC study [bioRxiv],
2018.
- M. Grønnesby, J. C. A. Solis, E. Holsbø, H. Melbye,
and L. A. Bongo, Machine Learning Based Crackle Detection in Lung
Sounds, [arXiv],
2017.
- H. M. Bøvelstad, E. Holsbø, L. A. Bongo, and E.
Lund, A Standard Operating Procedure For Outlier Removal In
Large-Sample Epidemiological Transcriptomics Datasets, 2017. [bioRxiv].
Other
- Dong C, Metzger M, Holsbø E, Perduca V, Carbonnel
Fr. Letter: how can we reduce mortality in elderly patients with
acute severe ulcerative colitis? Authors’ reply. Alimentary
Pharmacology and Therapeutics 2020; Volum 51 (12). ISSN 0269-2813.s 1445
- 1446.s
- Olsen KS, Holsbø E, Rognmo K, Krum-Hansen S, and
Lund E. Stress related to a suspicious mammogram - potential
transcriptomic effects. Abstract. The 7th Conference on
Epidemiology and Registry-Based Health Research - NordicEpi 2015
As advisor
PhD students
Master’s students
- Zin Anwar, Insights into the Biofilm-associated
Genetic Background of Escherichia coli. Master thesis, 2025.
(co-advisor)
- Elias E.G. Riise, Improving automated
underwater ship hull inspection through incremental learning &
uncertainty quantification in deep learning models. Master thesis,
2023.
- Erling Devold, Through Space and
Time. Master thesis, 2023
- Tengel Skar, Scalable exploration of
population-scale drug consumption data. Master thesis, 2019.
(co-advisor)
- Mike Voets, Deep Learning: From Data
Extraction to Large-Scale Analysis. Master thesis, 2018.
(co-advisor)
- Morten Grønnesby, Automated Lung Sound
Analysis. Master thesis, 2016. (co-advisor)
this file last touched 2025.06.10